Development of a compartmental model for biokinetics and dosimetry of 18F-choline in prostate cancer patients

Background:
- This work was done in the frame of the FP7 project MADEIRA (Minimizing Activity and Dose with Enhanced Image quality by Radiopharmaceutical Administrations)

Motivation:
- Improvement of the PET imaging procedure for 18F-choline in prostate cancer patients by introducing biokinetic modelling

Aim:
- Development of a compartmental model for biokinetics and dosimetry of 18F-choline in prostate cancer patients based on experimental PET imaging data

PET images of a prostate cancer patient
Development of a compartmental model for biokinetics and dosimetry of 18F-choline in prostate cancer patients

Results:

- Using PET/CT screenings performed with 18F-choline in 10 prostate cancer patients together with blood and urine analysis for different time points after injection, the temporal concentration course of 18F-choline has been obtained for different organs, blood and urine.
Development of a compartmental model for biokinetics and dosimetry of 18F-choline in prostate cancer patients

Results:

- On the basis of this experimental data about the temporal concentration course for 18F-choline and by using biokinetic modelling and population kinetic approach, a compartmental model was developed describing the individual patients' data for the biokinetic behaviour of 18F-choline within the body.
- In addition the uncertainty (and the sensitivity) of the model parameters were determined.
Development of a compartmental model for biokinetics and dosimetry of 18F-choline in prostate cancer patients

Conclusion:

- The biokinetic model developed for the first time for 18F-choline in prostate cancer patients can enable a better planning of PET screenings (e.g. due to the better prediction of the signal-to-noise ratios in the PET images).
- With the help of the biokinetic model, realistic estimates of the radiation dose received by the patients can be calculated. This helps to better protect the patient due to radiation.

Committed organ dose coefficients [mGy/MBq]

<table>
<thead>
<tr>
<th>Target region</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>Median</th>
<th>Ref. Patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>0.036</td>
<td>0.082</td>
<td>0.054</td>
<td>0.053</td>
<td>0.062</td>
</tr>
<tr>
<td>Kidneys</td>
<td>0.033</td>
<td>0.105</td>
<td>0.066</td>
<td>0.067</td>
<td>0.079</td>
</tr>
<tr>
<td>Spleen</td>
<td>0.014</td>
<td>0.040</td>
<td>0.027</td>
<td>0.027</td>
<td>0.038</td>
</tr>
<tr>
<td>Urinary bladder wall</td>
<td>0.015</td>
<td>0.037</td>
<td>0.022</td>
<td>0.020</td>
<td>0.017</td>
</tr>
<tr>
<td>Other tissues</td>
<td>≤ 0.022</td>
<td>≤ 0.032</td>
<td>-</td>
<td>-</td>
<td>≤ 0.031</td>
</tr>
</tbody>
</table>