Wp6. Cancer Imaging with focus on breast cancer

Anikitos Garofalakis

‘Frederic Joliot Hospital Service(SHFJ), Institute of Biomedical imaging(I²BM), Atomic Energy Commission(CEA)’
The use of animal models for the evaluation of FMT under realistic conditions

Objectives of Wp6:

To provide cancer animal models

To provide key fluorescence probes

Quantitatively examine FMT performance to visualize disease processes in-vivo

To predict clinical utility (48 month deliverable)
Animal models

- a. xenografted tumors
 - MDA-231
 - MCF-7
 - PC12-MEN2A
 - U87
 - PyMT
 - rat pheochromocytoma
 - human glioma

- b. spontaneous tumors
 - PyMT

Fluorescent probes

- a. commercial probes
 - Prosense
 - RGD-based optical probes (Integrisense680, Angiostamp680)
 - Angiosense

- b. custom-made probes
 - Aptamers
 - Nano-micelles

- Cathepsin activity
- Integrin avβ3
- Blood volume
fluorescent probes for tumor-related processes

- Integriν avβ3
- Neo-angiogenesis
- Cathepsin
- ECM degradation
- Blood volume
- FDG
Quantitatively examine FMT performance to visualize disease processes in-vivo

<table>
<thead>
<tr>
<th></th>
<th>μPET</th>
<th>FMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of information</td>
<td>Molecular</td>
<td>Molecular</td>
</tr>
<tr>
<td>Resolution</td>
<td>~ 1 mm</td>
<td>~ 1 mm</td>
</tr>
<tr>
<td>Kinetics</td>
<td>Fast (~seconds)</td>
<td>5-15 min/scan</td>
</tr>
<tr>
<td>Whole Body Imaging</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Time range of follow up</td>
<td>~ hours</td>
<td>~days</td>
</tr>
<tr>
<td>Cost</td>
<td>$$$</td>
<td>$</td>
</tr>
<tr>
<td>Activatable probes</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Labelling</td>
<td>Need radiochemistry</td>
<td>Simple</td>
</tr>
<tr>
<td>Quantification</td>
<td>Linear from pM</td>
<td>?</td>
</tr>
</tbody>
</table>
calibration of FMT

Use of tubes filled with fluorophores

Use of the quantification capacity of PET imaging in combination with a dual PET/Optical probe

vs [C]

PET

FMT

Anikitos GAROFALAKIS CEA, i²BM, SHFJ, LIME, INSERM U1023
FMT-PET-CT imaging

in vivo

Anikitos GAROFALAKIS CEA, I²BM, SHFJ, LIME, INSERM U1023
fDOT-PET-CT imaging/protocol

PET

FMT

PET

CT

0 min

30 min

60 min

90 min

CT contrast agent

targeted biological molecule
calibration/FMT-PET-CT imaging

PET/FMT/CT

Anikitos GAROFALAKIS
CEA, i²BM, SHFJ, LIME, INSERM U1023
b./.calibration/fDOT-PET-CT imaging/volume validation
Sensitivity limit ~ 1 pmoles, 5nM(C)

PET-FMT dual imaging

<table>
<thead>
<tr>
<th></th>
<th>μPET</th>
<th>FMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of information</td>
<td>Molecular</td>
<td>Molecular</td>
</tr>
<tr>
<td>Resolution</td>
<td>~ 1 mm</td>
<td>~ 1 mm</td>
</tr>
<tr>
<td>Kinetics</td>
<td>Fast (~seconds)</td>
<td>5-15 min/scan</td>
</tr>
<tr>
<td>Whole Body Imaging</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Time range of follow up</td>
<td>~ hours</td>
<td>~days</td>
</tr>
<tr>
<td>Cost</td>
<td>$$$</td>
<td>$</td>
</tr>
<tr>
<td>Activatable probes</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Labelling</td>
<td>Need radiochemistry</td>
<td>Simple</td>
</tr>
<tr>
<td>Quantification</td>
<td>Linear from pM</td>
<td>Linear from nM</td>
</tr>
</tbody>
</table>

Anikitos GAROFALAKIS

CEA, i²BM, SHFJ, LIME, INSERM U1023
cancer imaging in combination with PET

Angiostamp680
ControlAngiostamp680
Angiosense750

FMT
PET
CT
FMT
day -1
day 0
day 1
day 2

Prosense680
MDA-231/FDG-Cathepsin

Volume Mean

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prosense_DAY_1</td>
<td>317.781</td>
<td>3.5</td>
</tr>
<tr>
<td>Prosense_DAY_2</td>
<td>412.45</td>
<td>3.5</td>
</tr>
<tr>
<td>Prosense_DAY_3</td>
<td>373.337</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Anikitos GAROFALAKIS CEA, I²BM, SHFJ, LIME, INSERM U1023
MDA-231/FDG – Integrin αvβ3

RGD-based ligand

Control ligand

Anikitos GAROFALAKIS
CEA, I²BM, SHFJ, LIME, INSERM U1023
models and probes

a. xenografted tumors

- MDA-231
- MCF-7
- PC12-MEN2A
- U87

 - MDA231/ Cathepsin activity
 - MDA231/ Integrin localization
 - MDA231/ Nanomicelle labelling

b. spontaneous tumors

- PyMT

 - PC12-MEN2A/ Cathepsin activity
 - PC12-MEN2A/ Cathepsin activity/ Integrin localization

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>MDA-231</th>
<th>MCF-7</th>
<th>PC12-MEN2A</th>
<th>U87</th>
</tr>
</thead>
<tbody>
<tr>
<td>% signal overlapping</td>
<td>6.6 ± 2.5</td>
<td>6.7 ± 5.0</td>
<td>34 ± 12</td>
<td>31.8 ± 12.0</td>
</tr>
<tr>
<td>% volume overlapping</td>
<td>37.6 ± 8.1</td>
<td>39.0 ± 18.6</td>
<td>40.03 ± 19.02</td>
<td>41.2 ± 12.5</td>
</tr>
</tbody>
</table>

HMGU@Munich Del 7.4

Anikitos GAROFALAKIS CEA, i²BM, SHFJ, LIME, INSERM U1023
MCFS7 xenografted tumor/aptamers ACE8

“Annexin II” as potential target?
To provide cancer animal models

Del 6.3 To develop animal models of other cancer for studying FMT-XCT performance (U87 glioma cells)

To provide key fluorescence probes

2nd year deliverable (target of aptamer ACE8 has to be identified)

Quantitatively examine FMT performance to visualize disease processes in-vivo

Del 6.4 To perform in-vivo imaging of key animal models of cancer and correlate the findings with standard laboratory tests and growth measures

To predict clinical utility (48 month deliverable)
Acknowledgements

Laboratory of experimental molecular medicine (LIME)

Albertine Dubois, Dr
Xiao Tong, Phd student
Vincent Brulon, Technician
Raphael Boisgard, Dr
Bertrand Tavitian, Prof
Frédéric Duongé, Dr

Chemistry Laboratory for life sciences (LCV)

Bertrand Czarny, Technician

Group of radiochemistry et radio-pharmacy (GRR)

Bertrand Kühnast, Dr
Frederic Dollé, Dr

ex-members:
Agnes Cibiel, Dr
Carine Pestourie, Dr
Daniel Dupont, Dr
Nicolas Mackiewicz, Dr
Isabelle Jassens, Technician
a/fDOT-alone output

PC12-MEN2A with SentiDye® 700

coronal

sagittal

Anikitos GAROFALAKIS

CEA, I²BM, SHFJ, LIME, INSERM U1023
fDOT is often combined with a structural modality
b./.cancer imaging in combination with PET/FDG-Two color fDOT

![Unmixed AngioStamp680](image1)

![Unmixed AngioSense750](image2)

- [F18]FDG segmented volume
- AngioStamp680 signal segmented volume
- AngioSense750 signal segmented volume

Anikitos GAROFALAKIS CEA, I²BM, SHFJ, LIME, INSERM U1023
b./calibration/fDOT-PET-CT imaging/protocol

PET fDOT PET CT

0 30 60 90 min

Kidney contrast agent

Oligo

+

Known biodistribution

Deep seated organ

No degradation
b./.calibration/fDOT-PET-CT imaging
b./.calibration/fDOT-PET-CT imaging/volume validation

a) PET segmented volume
b) Optical signal segmented volume

PET/CT
fDOT/CT

PET segmented volume
Optical signal segmented volume
CT contrast
Limit ~ 1 pmoles, 5nM(C)
a/fDOT imaging

hCd2-GFP mouse

Garofalakis A et al
Diffuse light in a homogeneous medium

Continuous wave point source

\[\nabla^2 U(\mathbf{r}) - \kappa^2 U(\mathbf{r}) = -\frac{S_0 \delta(\mathbf{r})}{D} \]

\[\kappa = \sqrt{\frac{\mu_\alpha}{D}} \]

Solution for the energy density

\[U(\mathbf{r}) \propto e^{-\kappa r} \]

\[J_n \]

Source

Diffusive semi–infinite medium
b./.MDA-231/Integrisense and AngioStamp comparison

Integrisense 0h

- Tumor volume ~ 730 mm³
- 60.2% signal of optical in the surrounding
- 30.01% volume of tumor in the common area

Integrisense 3h

- 31.42% signal of optical in the surrounding
- 32.55% volume of tumor in the common area

RAFT-RGD 0h

- Tumor volume ~ 670 mm³
- 47.29% signal of optical in the surrounding
- 29.98% volume of tumor in the common area

RAFT - RGD 2h

- 36.2% signal of optical in the surrounding
- 36.48% volume of tumor in the common area
Discretization and weight matrix

- Sample the fluorescent concentration in \(N \) points (voxels)
- Convert integral equations into a system of linear equations

For \(M \) projections: \[
P[M \times 1] = W[M \times N] \cdot N[N \times 1]
\]
Commercial probes

- Prosense 680
- Integrinsense 680 (VisenMedical, USA)
- AngioStamp (Fluoptics, France)

Custom-made probes

- MPEG nano-micelles
b/./calibration

Use of fluorophores of controlled concentration

Use of the quantification capacity of PET imaging in combination with a dual PET/Optical probe

Low cost method but not realistic

High cost method but realistic