Carolin Loos
PhD candidate

Phone: +49 89 3187-3272
Building/Room: 58a / 001


Short CV

I studied Mathematics at the University of Ulm, the Boğaziçi University in Istanbul and the Technische Universität München. After obtaining my M.Sc. in 2015, I started as a PhD student at the Institute of Computational Biology.

Current research

  • Robust and efficient parameter estimation for ordinary differential equation (ODE) models
  • Mechanistic modeling of single-cell populations to unravel sources of heterogeneity
  • Applications in, e.g., pain sensitization, histone methylation and viral infection


  1. Fröhlich, F., Loos, C., & Hasenauer, J. (2019). Scalable Inference of Ordinary Differential Equation Models of Biochemical Processes. in Gene Regulatory Networks (pp. 385-422). Humana Press, New York, NY.
  2. Hass, H.*, Loos, C.*, Raimundez-Alvarez, E., Timmer, J., Hasenauer, J., & Kreutz, C. (2019). Benchmark Problems for Dynamic Modeling of Intracellular Processes. Bioinformatics, btz020 (*equal contribution)
  3. Sinzger, M., Vanhoefer, J., Loos, C., & Hasenauer, J. (2018). Comparison of null models for combination drug therapy reveals Hand model as biochemically most plausible. bioRxiv, 409946. accepted for publication in Scientific Reports.
  4. Loos, C.*, Moeller, K.*, Fröhlich, F., Hucho, T., & Hasenauer, J. (2018). A hierarchical, data-driven approach for modeling single-cell populations predicts latent causes of cell-to-cell variability. Cell Systems, 6(5), 593-603.
  5. Loos, C.*, Krause, S.*, & Hasenauer, J. (2018). Hierarchical optimization for the efficient parametrization of ODE models. Bioinformatics, 34(24), 4266-4273.
  6. Stapor, P., Weindl, D., Ballnus, B, Hug, S., Loos, C., Fiedler, A., Krause, S., Hroß, S., Fröhlich, F., & Hasenauer, J. (2017) PESTO: Parameter Estimation TOolbox. Bioinformatics, 34(4), 705-707.
  7. Maier, C., Loos, C., Hasenauer, J. (2017). Robust parameter estimation for dynamical systems from outlier-corrupted data. Bioinformatics, 33(5), 718-725.
  8. Loos, C., Fiedler, A., & Hasenauer, J. (2016). Parameter estimation for reaction rate equation constrained mixture models. Lecture Notes Comp. Sci. 9859, 186-200.
  9. Loos, C. (2016). Analysis of single-cell data: ODE constrained mixture modeling and approximate Bayesian computation. BestMasters, Springer Spektrum.
  10. Loos, C., Marr, C., Theis, F. J., & Hasenauer, J. (2015). Approximate Bayesian computation for stochastic single-cell time-lapse data using multivariate test statistics. Lecture Notes Comp. Sci. 9308, 52-63.

We use cookies to improve your experience on our Website. We need cookies to continuously improve the services, to enable certain features and when embedding services or content of third parties, such as video player. By using our website, you agree to the use of cookies. We use different types of cookies. You can personalize your cookie settings here:

Show detail settings
Please find more information in our privacy statement.

There you may also change your settings later.