Staff

Carolin Loos
PhD Student

Phone: +49 89 3187-3272
E-mail
Building/Room: 58a / 001

ResearchGateGoogleScholar

Short CV

I studied Mathematics at the University of Ulm, the Boğaziçi University in Istanbul and the Technische Universität München. After obtaining my M.Sc. in 2015, I started as a PhD student at the Institute of Computational Biology.

Current research

  • Statistical analysis of single-cell data
  • Parameter estimation for ordinary differential equation (ODE) models   
  • Investigation of heterogenous cell populations using ODE-constrained mixture modeling

Publications

  1. Sinzger, M., Vanhoefer, J., Loos, C., & Hasenauer, J. (2018). Comparison of null models for combination drug therapy reveals Hand model as biochemically most plausible. bioRxiv, 409946.
  2. Hass, H.*, Loos, C.*, Raimundez-Alvarez, E., Timmer, J., Hasenauer, J., & Kreutz, C. (2018). Benchmark Problems for Dynamic Modeling of Intracellular Processes. bioRxiv, 404590.
  3. Loos, C.*, Moeller, K.*, Fröhlich, F., Hucho, T., & Hasenauer, J. (2018). A hierarchical, data-driven approach for modeling single-cell populations predicts latent causes of cell-to-cell variability. Cell Systems, 6(5), 593-603. (*equal contribution)
  4. Loos, C.*, Krause, S.*, & Hasenauer, J. (2018). Hierarchical optimization for the efficient parametrization of ODE models. Bioinformatics, bty514.
  5. Fröhlich, F., Loos, C., & Hasenauer, J. (2017). Scalable Inference of Ordinary Differential Equation Models of Biochemical Processes. arXiv:1711.08079. to appear in the book Gene Regulatory Networks: Methods and Protocols.
  6. Stapor, P., Weindl, D., Ballnus, B, Hug, S., Loos, C., Fiedler, A., Krause, S., Hroß, S., Fröhlich, F., & Hasenauer, J. (2017) PESTO: Parameter Estimation TOolbox. Bioinformatics, 34(4), 705-707.
  7. Maier, C., Loos, C., Hasenauer, J. (2017). Robust parameter estimation for dynamical systems from outlier-corrupted data. Bioinformatics 33(5), 718-725.
  8. Loos, C., Fiedler, A., & Hasenauer, J. (2016). Parameter estimation for reaction rate equation constrained mixture models. Lecture Notes Comp. Sci. 9859, 186-200.
  9. Loos, C. (2016). Analysis of single-cell data: ODE constrained mixture modeling and approximate Bayesian computation. BestMasters, Springer Spektrum.
  10. Loos, C., Marr, C., Theis, F. J., & Hasenauer, J. (2015). Approximate Bayesian computation for stochastic single-cell time-lapse data using multivariate test statistics. Lecture Notes Comp. Sci. 9308, 52-63.

We use cookies to improve your experience on our Website. We need cookies to continuously improve the services, to enable certain features and when embedding services or content of third parties, such as video player. By using our website, you agree to the use of cookies. We use different types of cookies. You can personalize your cookie settings here:

Show detail settings
Please find more information in our privacy statement.

There you may also change your settings later.